Sistema de Previsão Imediata de Ocorrência de Tempestades para Apoio a Tomada de Decisão na Distribuição e Manutenção da Rede Elétrica

Luiz A. T. Machado, Daniel Vila, Henri Laurent, Carlos Morales, Juan Ceballos, Fernando Mirancos e Shiguematsu Nosaki

RESUMO:

Este documento apresenta um método de previsão a curto prazo de sistemas convectivos, usando imagens de satélites meteorológicos. Este sistema permite prever com até duas horas de antecedência a evolução e deslocamento de tempestades severas na região de abrangência da rede de distribuição de energia da Eletropaulo e Elektro. O sistema é baseado nas características estruturais e morfológicas dos sistemas convectivos.

PALAVRAS-CHAVE

Convecção, sistema convectivo, previsão de tempo.

I. INTRODUÇÃO

Uma característica marcante da convecção é sua organização em diversas escalas de tempo e espaço. Observa-se desde células isoladas da ordem de poucas centenas de metros até grandes aglomerados convectivos da ordem de milhares de quilômetros com ciclos de vida da ordem de dias e compostos de diferentes tipos nuvens. Os Sistemas Convectivos (SCs) são responsáveis pela maior parte da precipitação nos trópicos e em várias regiões de latitudes médias durante a estação quente.

O estudo das trajetórias e ciclo de vida dos SCs utiliza imagens no canal infravermelho termal do satélite geoestacionário GOES-12, com base na similaridade das características morfológicas (reconhecimento de padrões) e da área de superposição entre os SCs em imagens sucessivas (Machado *et al.*, 1998). Por sua vez, a análise do ciclo de vida dos SCs baseia-se principalmente na estrutura morfológica interna dos aglomerados de nuvens. Vários tipos de sistemas foram estudados na década de 70 e início dos anos 80, definindo-se diferentes tipos de SCs, tais como: linhas de instabilidade (Houze, 1977), "non squall lines" (Tollerud e Esbensen, 1985) e MCC- Complexos Convectivos de Mesoescala (Maddox, 1980).

Dois tipos de sistemas são reconhecidamente diferentes: linhas de instabilidade, caracterizadas por uma organização linear das células convectivas (e.g. Houze 1977) e complexos convectivos de mesoescala, caracterizados por uma organização menos importante das células convectivas no interior do sistema (e.g. Maddox, 1980). Embora diferentes condições dinâmicas e termodinâmicas favoreçam o aparecimento de sistemas convectivos de mesoescala, um ponto em comum é a forte convergência em baixos níveis que precede a sua formação por várias horas (Frank, 1970). No caso das linhas de instabilidade, a forte organização das células convectivas favorece o suprimento de ar quente e úmido, e o forte cisalhamento vertical do vento separa as regiões de "updrafts e downdrafts". No caso dos complexos convectivos de mesoescala, um jato em baixos níveis em um fraco regime de ventos supre as células convectivas de ar quente e úmido, reforçando o "warm core vortex", responsável pela manutenção do sistema (Maddox, 1983). Estes sistemas atingem tamanhos de 200 a 2000km e suficiente estabilidade dinâmica para se manterem por dezenas de horas, ocasionalmente durando vários dias (Machado et al., 1998).

O Objetivo do trabalho é desenvolver um sistema de previsão imediata que permite prever a evolução do sistema convectivo e a fase do ciclo de vida de forma a apoiar as operações de distribuição de energia e manutenção do sistema de distribuição.

📕 II. DADOS E MÉTODOS

O dado básico para a elaboração do método são as imagens do satélite GOES-12 no canal infravermelho. A seguir apresentamos as etapas de desenvolvimento do projeto.

a) Pré-processamento das imagens:

O primeiro passo para a implantação do método é a definição dos conceitos de recepção e pré-processamento das imagens GOES. O método de acompanhamento de sistemas convectivos necessita de imagens em alta resolução temporal e espacial e com poucas falhas (falta de imagens

Este trabalho foi financiado pela Eletropaulo e Elektro..

L. A.T Machado, J. Ceballos trabalham no CPTEC/INPE, H. Laurent no IRD-França, C. Morales no IAG/USP, D. Vila no INA- Argentina, F. Mirancos na ELtropaulo e S. Nosaki na ELektro.

e/ou de linhas na imagem). Com base nestes requisitos foram definidos os novos padrões de recebimento, préprocessamento e gravação das imagens GOES.

b) Definição dos limiares para classificação dos Sistemas Convectivos.

O sistema convectivo é composto por diversos tipos de nuvens que variam segundo a fase do ciclo de vida, a figura 1 exemplifica o ciclo de vida médio de um SC tropical. O primeiro passo na implementação do método foi gerar a definição de um SC em uma imagem GOES, neste modelo utilizamos os limiares, no canal 4 do GOES, de 235 K para definir o SC, e de 210 K, para definir as células convectivas imersas no SC. Esses limiares são ligeiramente inferiores aos utilizados por Machado et al. (1998), pois neste caso, o interesse é voltado para a previsão de curto prazo dos SCs com maior atividade convectiva. Com o processamento contínuo do modelo, poderemos realizar diversos testes para verificar o efeito dos limiares na detecção precoce dos SCs. Apesar da base do modelo tratar a convecção considerando dois limiares, um incluindo a cobertura de nuvens altas e médias (estratiforme, cirrus, cumulus congestus e cumulus nimbus) considerado, no modelo, como o SC e as nuvens com topos mais altos e mais ativos, considerado como as células convectivas, o modelo trabalha com outro limiar (260 K) para detecção precoce do SC. Os sistemas de nuvens, neste limiar, são seguidos paralelamente ao acompanhamento utilizando os limiares 235K e 210K. Caso um SC no limiar mais quente tenha um crescimento muito forte ela passará a ser acompanhado e monitorado como um SC, i.e., conjuntamente com os SC em 235K e 210K.

Schematic of Convective System Life Stages

FIGURA 1: Representação esquemática do ciclo de vida de um sistema convectivo

c) Definição do modelo "Espaços Conexos" que irá gerar os agrupamentos (clusters) de pixels.

Nesta fase, a imagem do satélite GOES em 10 bits já foi transformada em uma imagem com três informações: ausência de SC, SC e célula convectiva (CC). Baseado nesta classificação é necessário aplicar um método que permita isolar os agrupamentos de pixels classificados como SC e CC. Machado et al. 1983 discutem e utilizam metodologias para gerar agrupamento de pixels. Basicamente este processo consiste em agrupar os pixels vizinhos classificados como SC ou CC.

d) Variáveis incluídas no novo modelo estatístico

Todas as variáveis são calculadas para cada sistema convectivo e para um dado limiar (CS) e inclui informação sobre os topos mais frios (CC). Uma descrição detalhada dos parâmetros definidos neste modelo pode ser encontrada em : Machado et al. 1998, Mathon and Laurent (2001) e Vila and Machado (2003). Os parâmetros básicos são: tamanho do sistema, centro de massa, excentricidade, Temperatura de brilho mínima e média, número de células convectivas imersas no sistema e localização das regiões de máxima atividade.

e) Variáveis incluídas no novo modelo estatístico

O método de identificação de um mesmo SC no tempo "t" e nas imagens sucessivas em "t+Dt", é baseado no critério de máxima superposição da área dos SC em imagens sucessivas. O número de pixel mínimo para considerar a continuidade do SC é de 1250 pixels (aproximadamente 20.000 km²) para um Dt= 30 minutos. Se a superposição for menor, o sistema não é considerado como sendo o mesmo sistema no tempo anterior.

Quatro tipos de situações são considerados neste algoritmo de acompanhamento:

f) Método de Acompanhamento no tempo

- *Sistema novo ou de geração espontânea (N):* É aquele SC que é identificado numa imagem e não esta presente na imagem anterior ou não cumpre com o critério de mínima superposição dos SC.
- ii) Continuidade (C): E aquele SC que é identificado numa imagem e esta presente na imagem anterior cumprindo com o critério de mínima superposição dos SC. Essa situação pode ser visualizada na Figura 2A.
- *iii*) Split (S): Quando no tempo "t" existe um sistema que cumpre com o critério de mínima superposição dos SC com dois ou mais sistemas no tempo "t+Δt", é considerado um processo de "split". Neste casso, o maior sistema no tempo "t+Δt" é considerado como a continuidade do SC no tempo "t". Essa situação pode ser visualizada na Figura 2B.

iv) Merge (M): Situação contraria com a anterior. Quando no tempo "t" existem dois ou mais SC que cumprem com o critério de mínima superposição com só um sistema no tempo"t+ Δt ", é considerado um processo de "merge". Neste casso, cada um dos SC no tempo "t" são considerados como a continuidade de diferentes famílias de sistemas. Essa situação pode ser visualizada na Figura 2C.

Alem dessas considerações sobre o acompanhamento dos SCs, nesta etapa do processo é calculada a variação temporal dos parâmetros estatísticos mais importantes, levando em conta a continuidade do sistema com as situações descritas no item anterior. As variáveis incluídas numa primeira etapa são: área, temperatura média do SC, temperatura mínima e temperatura mínima do kernel de nove pixels. Outra variável calculada nesta etapa é a velocidade do sistema. O calculo é feito naqueles casos em que existe uma continuidade do sistema como a diferença da posição do centro de massa no instante "t" e o instante "t+ Δ t" dividido " Δ t".

A partir desta informação é possível gerar uma lista que descreve a variação temporal do SC durante seu ciclo de vida desde de sua primeira detecção até a dissipação completa.

FIGURA 2: Imagem esquemática do método de acompanhamento do ciclo de vida do sistema convectivo.

g) Método de calculo da velocidade e direção de propagação:

A partir do critério de identificação de um mesmo SC no tempo "t" e nas imagens sucessivas em "t+ Δ t", para cada um dos limiares, baseado no critério de máxima superposição, o calculo inicial da velocidade (em km/h) é gerado considerando a diferença entre a posição do centro de massa do mesmo sistema em imagens sucessivas divididas pelo tempo entre as imagens. Normalmente esse tempo é de 30 minutos

Nos casos de "split" ou "merge", algumas vezes, a velocidade calculada não è realista, porém a velocidade é calculada como a média da velocidade dos sistemas próximo ao sistema em questão. O critério de vizinhança utilizado é realizado considerando um circulo de 2,5 graus de raio centrado no centro de massa ou de quatro vezes o raio efetivo do sistema, ou o que for maior.

No caso de um sistema novo o de geração espontânea, o critério de proximidade é utilizado para a estimativa da velocidade inicial do SC. A direção de propagação do SC é calculada em coordenadas meteorológicas.

A partir do critério de identificação de um mesmo SC nos tempos "t- $2\Delta t$ ", "t- Δt ", "t" (três imagens sucessivas), para cada um dos limiares é calculado o deslocamento previsto a partir do seguinte procedimento:

A velocidade estimada é gerada considerando o deslocamento do centro de massa entre os tempos "t- $2\Delta t$ " e "t- Δt ", gerando una velocidade V(t-1) de acordo com os critérios definidos acima. Considerando constante essa velocidade (em modulo e direção), é gerado uma velocidade prevista VP(t). Além disso, é calculada a velocidade real entre o tempo "t- Δt " e "t" (V(t)). O prognostico do deslocamento VE (t+1) é calculado como a velocidade no tempo "t" mais a diferença entre o deslocamento real e previsto no tempo "t" ($\Delta V(t)$ = V(t)-VP(t)). Este procedimento pode ser visualizado na Figura 3.

FIGURA3: Estimativa da velocidade no tempo "t+ Δt "

h) Tendência de crescimento e desenvolvimento do SC

Esta parte do trabalho baseia-se na análise da variável $1/A^*(\delta A/\delta t)$, onde A é a área do sistema convectivo. Este parâmetro é indicativo do crescimento (ou decrescimento) relativo do sistema com respeito a sua área média em um intervalo de tempo δt (tipicamente $\frac{1}{2}$ hora). Se o valor é positivo o sistema está em processo de expansão, se o valor é próximo de zero o sistema atingiu a maturação e se o valor for negativo o sistema está na fase de dissipação.

O objetivo desta etapa è a geração de um modelo de ciclo de vida dos sistemas baseados na informação estatística do comportamento dos sistemas. A partir dos trabalhos de Machado e Laurent (2003), o modelo do ciclo de vida de um SC pode ser estimado a partir da seguinte equação.

$$A(t) = \alpha * e^{at^2 + bt + c}$$
(1)

onde α , a, b e c são parâmetros a serem definidos de acordo com o tempo de vida total do sistema. Porem, o valor $1/A^*(\delta A/\delta t)$ são tipicamente retas.

$$1 / A * (\partial A / \partial t) = mt + b$$
 (2)

o valor de m e b dependem do tempo de vida total do sistema. O estudo estatístico esteve focalizado na classificação em grupos dos sistemas de acordo com o tempo total de seu ciclo de vida: menor que 2 horas, entre 2 e 4 horas, 4 a 8 horas é mais que 8 horas.

Para cada grupo foi calculado o valor médio de expansão inicial, o tempo em que o parâmetro $1/A^*(\delta A/\delta t)$ esteve próximo a zero (máxima área) e o momento de dissipação do sistema. O resultado foi um conjunto de retas com o valor de $1/A^*(\delta A/\delta t)$ para cada grupo considerado. As curvas ajustadas são apresentadas na figura 4

FIGURA 4 - Variação da área com o tempo com respeito ao tempo de vida total do sistema. Valores positivos indicam crescimento enquanto que os negativos significam decaimento do sistema

A primeira estimativa do tempo total do ciclo de vida e feita a partir da expansão inicial. De acordo com o modelo proposto, a área que o sistema terá nas próximas horas depende do valor do parâmetro de expansão. Este valor é calculado com base na expansão inicial do sistema e nas curvas apresentadas na Figura 4.

O ciclo diurno é um parâmetro extremamente importante para atividade convectiva. Logo, adicionalmente a o que foi considerado, calculou-se o comportamento geral médio de todos os sistemas ao longo do dia. Essa informação estatística permite o conhecimento do ciclo diurno da convecção, que são incorporados no modelo do ciclo de vida individual de cada sistema através de um novo parâmetro que é determinado como a média entre a expansão calculada a partir da reta característica de cada sistema e o parâmetro de expansão do ciclo diurno. A figura 5 mostra esse parâmetro de expansão do ciclo diurno como uma proporção entre a área média do sistema no tempo t e o tempo t_{-1} . Valores maiores que 1 mostram que os sistemas se expandem e valores menores que 1 mostram una redução no tamanho dos mesmos.

CICLO DIURNO

Desta forma, os parâmetros que serão usados para prever a variação da área do sistema convectivo serão fruto de uma combinação da taxa de expansão da área no instante inicial e da função que modula o ciclo diurno.

III. PROTÓTIPO DO MODELO FINAL DE MONITORAMENTO

As figuras 5A e 5B mostram um exemplo do produto final do sistema de monitoramento e previsão imediata de sistema convectivos. Na figura 5A observamos os sistemas convectivos e direção de deslocamento, a cor da flecha de direção indica uma estimativa do tempo de duração do sistema convectivo. A cor azul corresponde a até 2 horas, a cor vermelha a um tempo de vida de 2 a 6 horas e branca maior que 6 horas. As cores dos sistemas convectivos indicam a fase do ciclo de vida, amarelo corresponde a fase de iniciação, vermelho maturação e verde dissipação. As cores são apresentadas em degrade os pontos mais brilhantes correspondem a região mais ativa do sistema convectivo. O detalhamento de cada sistema poderá ser obtido ao se clicar no sistema. Desta forma, irá aparecer uma nova tela (Fig. 5B) onde pode se observar a evolução de parâmetros morfológicos e radiativos que permitem analisar a evolução temporal do sistema convectivo. Nesta tela são apresentadas as posições geográficas previstas do sistema, e as evoluções temporais (incluindo a previsão) da área, temperatura do topo e expansão da área. Para as próximas duas horas. Esse sistema apresentará uma tela detalhada sobre a região de atuação da Eletropaulo e Elektro.

FIGURA 5 A - Protótipo do produto final.

FIGURA 5 B - Protótipo da tela secundária de análise do sistema convectivo.

📕 IV. CONCLUSÕES

Este trabalho apresenta um método para previsão imediata, até duas horas, de tempestades severas organizadas em escala espacial de dezenas de quilômetros. O método baseia na evolução dos deslocamentos para prever a direção e a expansão da área para prever a fase e a duração do ciclo de vida do sistema convectivo. O método será implantado operacionalmente em setembro, no CPTEC, com o fim de atender as necessidades da Eletropaulo e Elektro na distribuição de energia elétrica.

V. AGRADECIMENTOS

Os autores Agradecem ao CTA pelo apoio dado na elaboração desta pesquisa e a Eletropaulo e Elektro na adaptação do modelo às necessidades do setor elétrico e ao financiamento da pesquisa.

📕 VI. REFERÊNCIAS BIBLIOGRÁFICAS

- Frank, 1970. Frank, W. M., 1978: The life cycles of GATE convective systems. J. Atmos. Sci., 35, 1256-1264
- Houze, R.A., 1977: Structure and dynamics of a tropical squall-line system. Mon. Wea. Rev., 105, 1540-1567.
- Machado, L.A.T. e W.B. Rossow (1993). Structural characteristics and radiative properties of tropical cloud clusters. Mon. Wea. Rev. 121, 3234-3259.
- Machado, L.A.T.; W.B. Rossow; R.L. Guedes e A. Walker (1998). Life cycle variations of convective systems over the Americas. *Mon. Wea. Rev.* 126, 1630-1654.
- Machado L. A. T. and H. Laurent, (2003). The convective system area expansion over Amazonia and its relationships with convective system life duration and high-level wind divergence Submitted to Monthly Weather Review.
- Maddox, Robert A. (1983):Large-Scale Meteorological Conditions Associated with Midlatitude, Mesoscale Convective Complexes. Mon. Wea. Rev: Vol. 111, No. 7, pp. 1475–1493.
- Maddox, R.A. (1980): Mesoscale convective complexes. Bull. Amer. Meteor. Soc.,61, 1374-1387.
- Mathon V. and H. Laurent, 2001. Life cycle of the Sahelian mesoscale convective cloud systems. *Quart. J. Roy. Meteo. Soc.*, **127**, 377-406.
- Vila D. and L. A. T. Machado (2003).Pattern recognition of Convective System. Submitted to International Journal of Remote Sensing.